Let $\alpha $ and $\beta $ be the roots of the quadratic equation ${x^2}\,\sin \,\theta  - x\,\left( {\sin \,\theta \cos \,\,\theta  + 1} \right) + \cos \,\theta  = 0\,\left( {0 < \theta  < {{45}^o}} \right)$ , and $\alpha  < \beta $.  Then $\sum\limits_{n = 0}^\infty  {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ is equal to

  • [JEE MAIN 2019]
  • A

    $\frac{1}{{1 - \cos \,\theta }} - \frac{1}{{1 + \sin \,\theta \,}}$

  • B

    $\frac{1}{{1 + \cos \,\theta }} + \frac{1}{{1 - \sin \,\theta \,}}$

  • C

    $\frac{1}{{1 - \cos \,\theta }} + \frac{1}{{1 + \sin \,\theta \,}}$

  • D

    $\frac{1}{{1 + \cos \,\theta }} - \frac{1}{{1 - \sin \,\theta \,}}$

Similar Questions

The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are

The number of real roots of the polynomial equation $x^4-x^2+2 x-1=0$ is

  • [KVPY 2018]

If $\alpha , \beta , \gamma$ are roots of equation $x^3 + qx -r = 0$ then the equation, whose roots are

$\left( {\beta \gamma  + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha  + \frac{1}{\beta }} \right),\,\left( {\alpha \beta  + \frac{1}{\gamma }} \right)$

If $a < 0$ then the inequality $a{x^2} - 2x + 4 > 0$ has the solution represented by

If $a, b, c$ are real numbers such that $a+b+c=0$ and $a^2+b^2+c^2=1$, then $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2$ $+(5 a-8 b+3 c)^2$ is equal to

  • [KVPY 2017]